

Session E-infrastructures and Their Services for Research Infrastructures

The Partnership for Advanced Computing in Europe

Thomas Lippert Chair of the PRACE Council

Ostrava, 6 November 2018

PRACE Helps Creating Leadership Science

Ground-breaking results of European science are

- > achieved by supercomputing in various areas of science and industry
- > medicine, biology, geology, physics, engineering, social sciences etc

Leadership-class supercomputers in Europe currently are

- > provided by 5 hosting countries
- > to be boosted by (pre)exascale and petascale systems through EuroHPC
- > Today provisioned by the PRACE in strict scientific peer review
- > mandatory for the success of European science and industry

Support by the European Commission

- European Commission: has supported the development of the PRACE infrastructure through a series of 1+6 pan-European implementation projects (PRACE IP-Projects)
- 26 Member States of PRACE: PRACE IP-projects create and unite competence and efforts of experts on a pan-European scale

IT4Innovations & PRACE since 2010

Helps to access EU HPC resources for researchers in Czech Republic Contributes to EU HPC roadmap

Commits 5-10% of IT4I resources for EU researchers (>DECI-9)

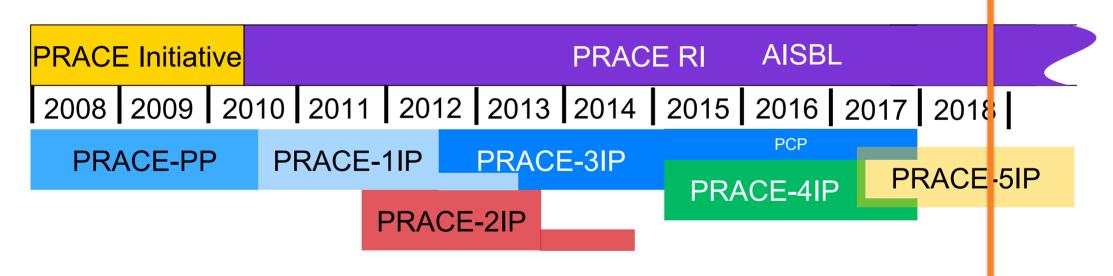
PRACE-4IP Kick Off Meeting April 2015 Int. HPC Summer School 2018

June 2010 VSB Tech. Univ. Ostrava becomes PRACE member

PRACE Mays 16

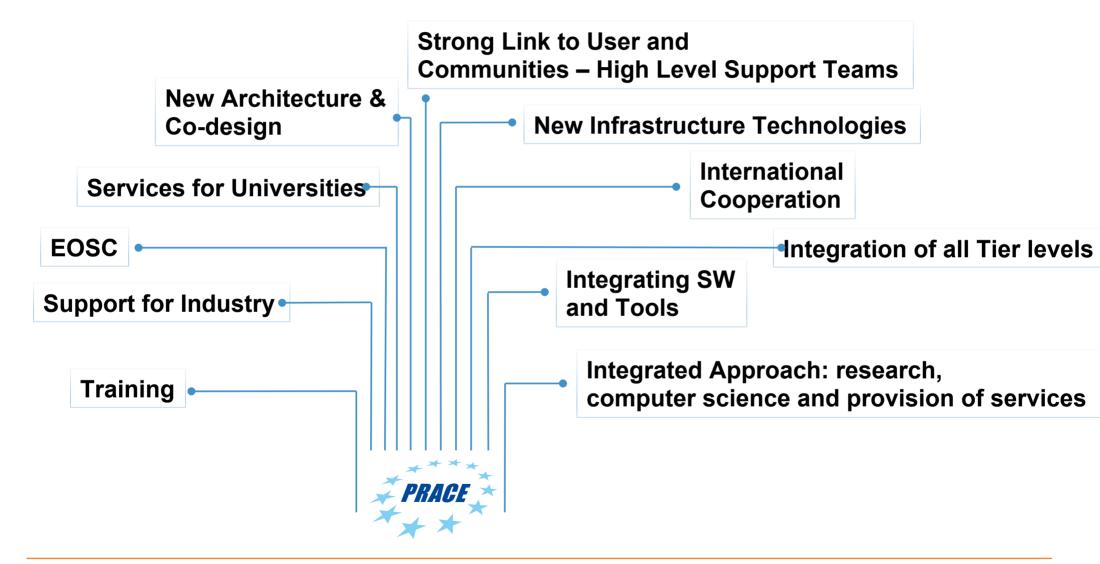
WP6 - Colead

THE PRACE History

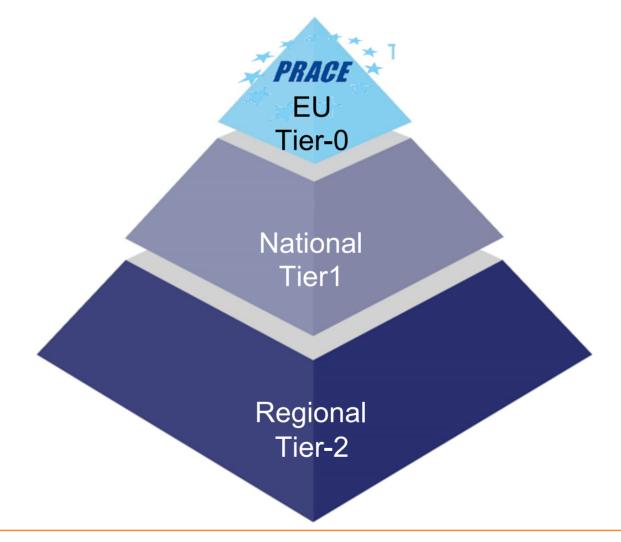

- Precursor The DEISA Project (Victor Alessandrini, F)
- **First Ideas** 2003 HPC-Euro Interest Group (Hugh Pilcher Clayton, UK)
- Closing in 2006 HPC in Europe Task Force (HET) (Kimmo Koski, FL)
- ESFRI 2006 HPC is on the Roadmap
- PRACE MOU 2007 (Alain Lichnewsky, F, Achim Bachem, D)
- **PRACE Signing** 2010 (Achim Bachem, D)
- PRACE II 2016 (Anwar Osseyran, NL)
- **PRACE Future 2018 ...**, TL, D

- **PRACE** Mission
- Enable high-impact scientific discovery and engineering research and development across all disciplines to enhance European competitiveness for the benefit of society.
- 2 Offering world-class computing and data management resources and services through a peer review process.
- 3 Strengthen the European users of HPC in **industry**

THE PRACE Timeline



IP Projects supported by EC with >110 Million €



PRACE Tree of Competences

Europe's HPC Provisioning Pyramid

PRACE Tier-0 Systems in 2018

NEW ENTRY 2018

JUWELS: Bull Sequana GAUSS @ FZJ, Jülich, Germany

In the future: EuroHPC will provide

MareNostru BSC, Barcel #16 Top 500 Pre-Exascale and Exascale Machines

enovo Germany **TRY 2018**

CSCS, L #3 Top 5

NEW ENTRY 2018

JOLIOT CURIE : Bull Sequana GENCI/CEA, Bruyères-le-Châtel, France

CSCS, Lugano, Switzerland #3 Top 500

Hazel Hen: Cray GAUSS/HLRS, Stuttgart, Germany #19 Top 500

MARCONI: Lenovo CINECA, Bologna, Italy #14 Top 500


Close to 110 PFlops cumulated peak performance

PRACE – 6 November 2018

http://82.116.198.186:8080/

The European HPC Systems Map

Top Infrastructure \rightarrow Top Science

* * * * E

EuroHPC

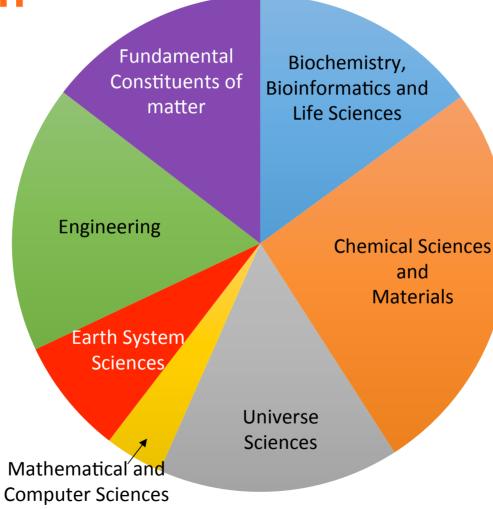
- Infrastructure: huge investment
- Infrastructure: managed top-down
- EuroHPC
 - EU coordination and funding
 - Joint undertaking (JU)
 - 25 member states
 - Focus on acquisition & operation
 - Focus on research & innovation
- Declaration, Rome, 23-3-2017

- Science is community effort
- Science: develops bottom-up
- PRACE
 - Engagement of many scientists
 - Pan-European association (AISBL)
 - > 26 members states
 - Established record in provision
 - > Europe-wide training, user support
- Foundation, Brussels, 17-4-2010

PRACE - Achievements

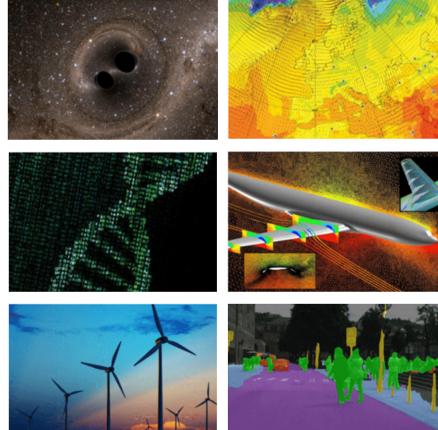
PRACE Main Achievements to-date

- >650 scientific projects enabled
- ▶ >17 billion core hours since 2010, 63% led by another PI than HM
- R&D access to industrial users with >50 companies supported
- >11 000 people trained through PRACE Training
- Close to 110 Petaflops of peak performance on 7 systems
- PRACE is only e-infrastructure landmark on ESFRI Roadmap 2016


PRACE Peer Review

- Know-how over 8+ years
- ERC standard peer review process
- Peer Review Office (PRO)
 - check of proposals
 - coordination of the process
- Technical Review of proposals
- Access Committee Domain and HPC specific criteria
- Resource Allocation Panel (RAS)

Application Spectrum


PRACE – Scientific Case

Scientific applications

- urgent need for more compute cycles, AND
- huge demands memory bandwidth & I/O

Need new approaches

- Ensemble parallelism, deep learning, and statistical models
- systems able to handle tens of thousands of active jobs and large I/O requests
- Software & algorithms take longer to change than hardware
 - PRACE & Europe need a much more ambitious strategy to develop the SW part of next-generation computing

PRACE Schools

Excellence in Education and Training for HPC in Europe

PRACE Advanced Training Centres

&

PRACE Training Centres

- PRACE-based programme supporting HPC adoption by SMEs
- PRACE Council endorsed SHAPE as a permanent PRACE service

"The decision of the PRACE Council to make SHAPE (SME HPC Adoption Programme in Europe) a permanent service was keenly welcomed by the PRACE Industrial Advisory Committee (IAC)"

Calls for applications

Jürgen Kohler, Chair of the IAC

OUR PRACE DAYS Where Science meets Industry

PRACE IP All-Hands Meeting Athens, 31 January - 2 February 2017

EDI The European Data Initiative

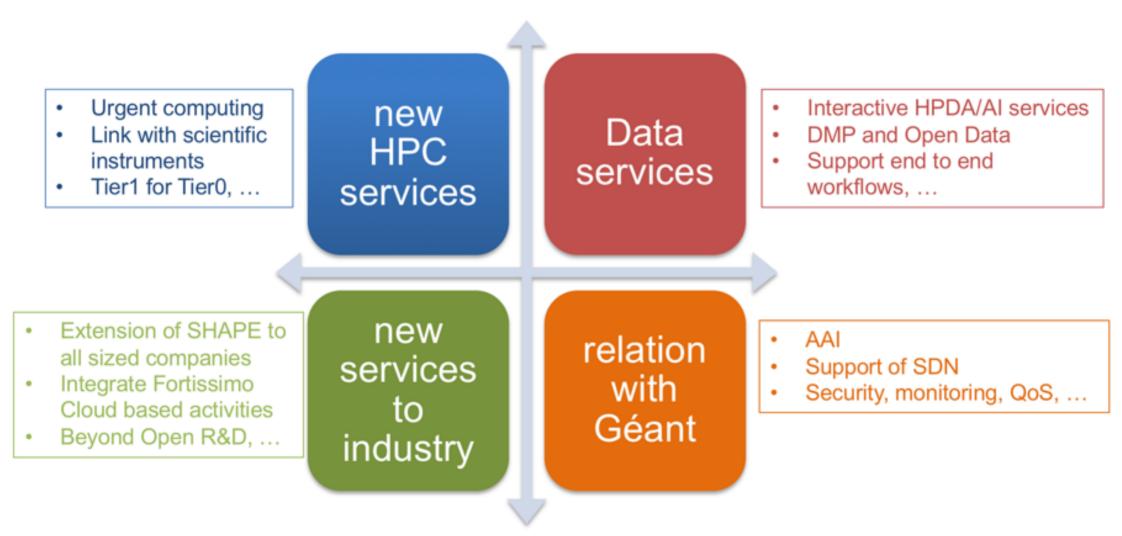
The European Data Initiative (EDI)

- Combination of world-class supercomputing (HPC) capability, high-speed connectivity, data storage and interfaces for cloud-based service delivery.
- Only with High-performance ICT infrastructures the current and expected scale of future data flows can be managed.
- European science, industry and public services need worldclass infrastructures to compete in the digital economy.

Towards EDI | challenges

- Target Exascale building up on PRACE's momentum
- Move towards a data-centric approach
- Extend services towards industry and to public sector
- Enhance integration of the Tiers and connects to EOSC

The Role of PRACE in EDI


► Support EuroHPC → establishment of EDI PRACE and GÉANT should interact as core providers of EDI.

New HPC / HPDA / AI services

Urgent computing, link with scientific instruments

- Scale up SME Adoption Programme (SHAPE)
- Pan-European federated data infrastructure PRACE will feature a data management and access layer based on infrastructures like ICEI / Fenix (HBP) and EUDAT

THANK YOU FOR YOUR ATTENTION

www.prace-ri.eu

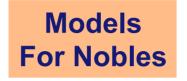
30

www.prace-ri.eu

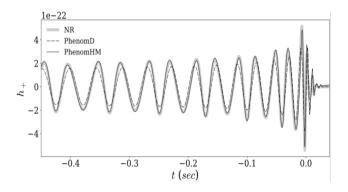
PRACE Enabling Leading Edge Simulations for European Science - Selected Results from PRACE Systems

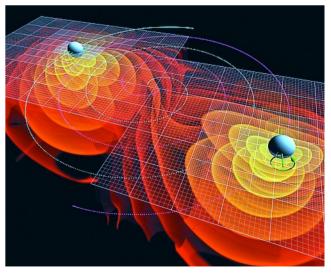
Mare Nostrum @ BSC – 2017

3456 nodes 394 TB RAM, 830 TB SSD 14 PB disk tape storage n/a


OPA		
Mare	Mare	
Nostrum	Nostrum	
6480	2016	
Skylake	p9+Volta	

Lead Institution: UIB (Spain) - collaborators from UK, Germany, India; 33 Mio Core hrs

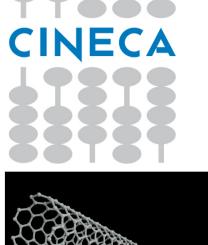

Modelling Gravitational Wave Signals

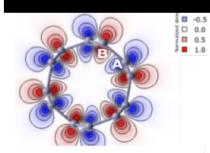

- Identification of gravitational wave signals from merging black holes
- ► Model signals across the parameter space of plausible binary mergers ≥ 7 dimensions!
- Model Input: solutions of Einstein's Equations
- ▶ 1 point in parameter space ~ O(10⁵) CPU hours
- Templates for analysis: LIGO/Virgo detectors

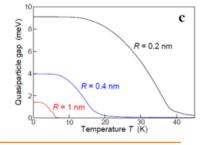
Barcelona Supercomputing Center Centro Nacional de Supercomputación

Marconi @ CINECA – 2017

6600 server nodes 560 TB memory 15 PB disk 60 PB tape storage

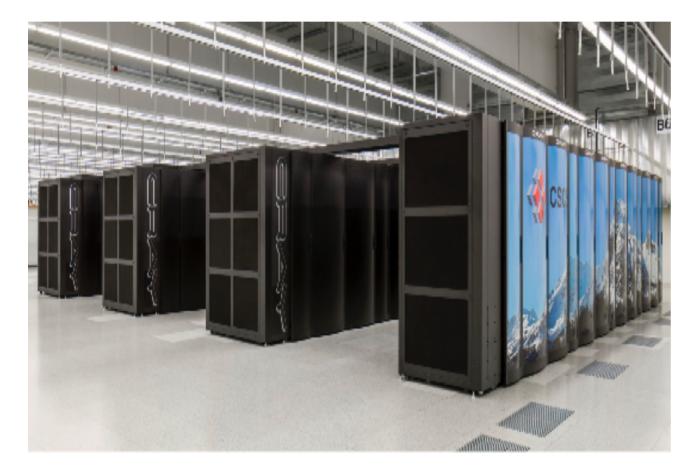

OPA		
Marconi	Marconi	Marconi
1440	3600	4608
Broadwell	KNL	Shkylake


* * * * * * * PRACE * * * Carbon nanotubes as excitonic insulators, D. Varsano, S. Sorella, D. Sangalli, M. Barborini, S. Corni, E. Molinari and M. Rontani Nature Communications 8, 1461 (2017)


Carbon Nanotubes as Excitonic Insulators

Forefront Simulation

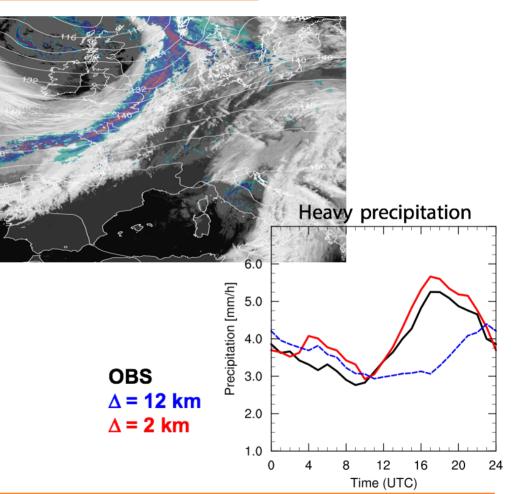
- Excitonic Insulator Phase: instability of a zero gap semiconductor against tendency of mutually attracting electrons and holes to form bound pairs
- Idea: W. Kohn in 1968, but observation of EIP still elusive
- Finally Proved on CINECA systems by ab initio simulations (QMC): below a critical temperature the exciton phase is present theoretically, EIP is realized in zero gap carbon nanotubes (CNT)



Piz Daint @ CSCS - 2016

6751 server nodes 600 TB memory 10 PB disk tape storage

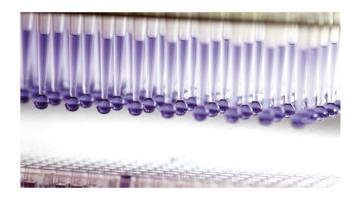
Cray Aries	
Piz Daint	Piz Daint
5320	2862
Haswell + Tesla	Broadwell


PI: Christoph Schaer, ETH, Convection-resolving Climate on GPUs (gpuCLIMATE), 170 Million core-hours

Convection Resolving Climate Simulations

- Convection needs km-scale resolution
- Significant improvements in representation of diurnal cycle, heavy precipitation and clouds
- COSMO model scales to 5300 GPU accelerated nodes, runs 2-3x faster than on TaihuLight (present #1 on Top500)

World Record in Code Acceleration


CSCS Centro Svizzero di Calcolo Scientifico Swiss National Supercomputing Centre

The Grand Challenge of Drug Design

- Office of Health Economics study of 2011
- Cost of developing new drugs
 - \$ 200 million in the 1970s
 - ▶ \$ 2 billion in 2010 (scaled to 2011 currency values)
- Development time
 - ▶ 6 years in the 1970s
 - ▶ 13.5 years in 2010
- Classical search technology for new drugs not scalable (costs and time)
 - ► For new drugs: > 1 million candidates to test
 - ► For each candidate: \$ 20 to \$ 130

Boost Prototyping and Reduce Costs by Supercomputers

- Industry
 - Novartis Swiss Pharmaceutical
 - Schrödinger German life and materials science software
- ► The Task
 - 21 million drug candidate molecules tested by Novartis
 - New HPC algorithm by Schrödinger
- ► The Costs
 - Production run costs: EUR 10,000 on Piz Daint
 - Gain Factor: O(1000) in costs and person hours

Curie @ GENCI - 2013

5588 server nodes360 TB memory6 PB disk10 PB tape storage

Mellanox IB QDR		
Curie 10080 Sandy Bridge	Curie 1440 Nehalem	Curie 188 Westmere + Tesla

42 million core hours allocated on the CURIE Tier-0 (GENCI)

Push Competitiveness

of European Industry

Biggest Crash Optimization Ever

Renault: New optimization methods based on 20 million d.o.f. finite elements meshes

with 200 different parameters

- Anticipate new security rules (EuroNCAP6)
- Impossible with existing Renault R&D facilities
- World premiere:
 - 5 years lead for

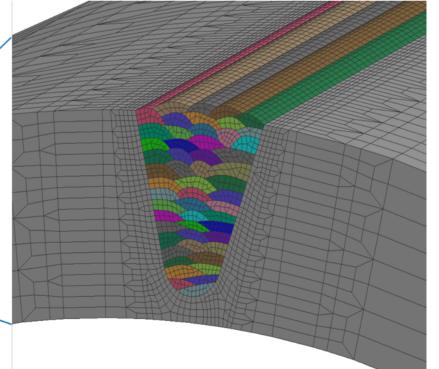
Readers' Choice

Hazel Hen @ HLRS - 2015

7712 server nodes 964 TB memory 10 PB disk tape storage

Cray Aries	
Hazel Hen 15424 Haswell	

* PRACE *


SHAPE: SME HPC Adoption Programme in Europe

PRACE Brings

SMEs to HPC

HPC Welding - A SHAPE Project

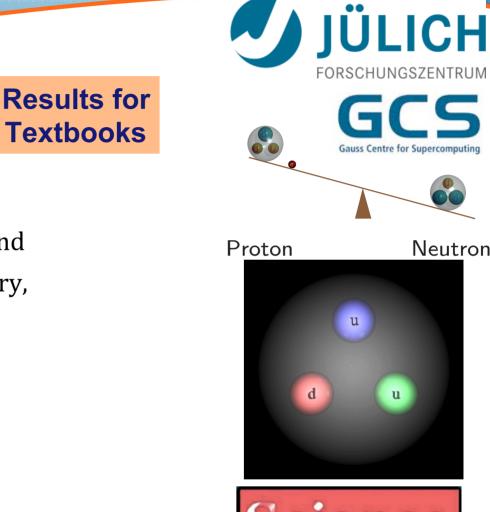
- Simulation of multi-layered welding lines
- Close collaboration with office of welding and DYNAmore supporting LS-DYNA
- The SME gained significant knowledge and experience in HPC
- The SME sees high
 commercial benefit as
 to better cost estimates

HL

R

JUQUEEN @ JSC - 2012

28672 nodes 448 TB memory 18 PB disk 75 PB tape storage


BGQ 5D Torus	
JUQUEEN 28672 Power BQC	

PI: Zoltán Fodor, Ab inition calculation of the neutron-proton mass difference, Science 347 (2015) 1452-1455, 150 Mio core hours.

That I may understand whatever, **Binds world's inner core together** Faust, J. W. Goethe

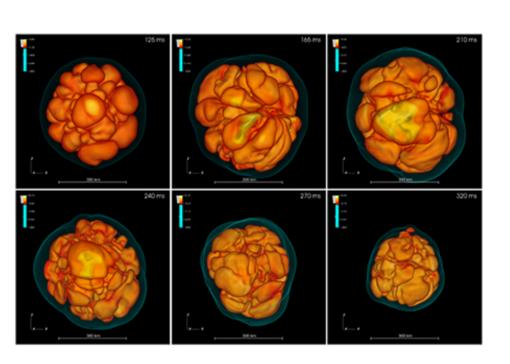
- Solving an 80 year old riddle
- Understanding the mass difference of proton and neutron by simulation of the fundamental theory, QCD
- 80 years after the experimental detection: simulation on JUQUEEN

Neutron

SuperMUC @ LRZ - 2015

15062 server nodes 537 TB memory 15 PB disk 30 PB tape storage

Mellanox	Mellanox	Mellanox
IB QDR	IB FDR	IB FDR
SuperMUC	SzperMUC2	SuperMuc3
19252	10752	60
Sandy Bridge	Haswell	KNL



PI: Hans-Thomas Janka, Max-Planck-Institut für Astrophysik, Garching, Germany, Stellar Core-Collapse Group at the Max Planck Institute for Astrophysics (MPA); 98 Mio Core-h

Supernova Simulations

- How do neutron stars form?
- We know by the most advanced 3D simulation of supernovae
- Highly efficient, well parallelized numerical implementation on SuperMUC
- A New Neutrino-Emission Asymmetry in Forming Neutron Stars is predicted

Breakthrough Predictions

47

Gauss Centre for Supercomputing